

WFIRST Coronagraph (CGI): Observing Scenario 6, rationale and modeling

Brian Kern

Jet Propulsion Laboratory

California Institute of Technology

Overview

- Error budget context for stability metrics
- Operations effect on stability requirements
- Target catalog + bright star catalog
- STOP modeling results

Requirements / Error Budget Foundation

- If raw contrast (residual starlight) were much lower than planet flux ratio, no special treatment would be necessary
 - L2 requirement CGI-2.2 ~ 8e-9 flux ratio planet at 4 λ/D , SNR=10
 - L3 requirement CGI-L3.14 raw contrast 3e-9 at 3-4 λ/D
 - Can't get SNR=10 without subtracting raw contrast
- Residuals from subtracting raw contrast include optical dynamic terms and measurement noise
- Optical dynamic terms:
 - DM motion (uncommanded); DM settling times
 - Thermally induced WFE, considering LOWFS control
 - Changes in RWA jitter amplitudes (LoS and WFE)

Stability Error Budget from WIETR 8/16/17

Current context of "post-processing"

- In early formulation of SNR calculations (circa 2014), $f_{\rm pp}$ post-processing factor related raw contrast to residuals after post-processing
 - Notional $f_{pp} = 1/10 \text{ or } 1/30$
 - Placeholder to carry forward until modeling quantification
- Current baseline operation is differential imaging during a single visit, followed by post-processing incorporating mission-wide library
 - "Contrast Stability" quantifies residuals from simple pixel-by-pixel differential image taken from single visit
 - Post-processing may use mission-wide image library, auxiliary data, spatial mode filtering
 - Notional $f_{pp} = 1/2$ on top of "Contrast Stability"

DRM gross cartoon

- Observations are grouped by observing mode
 - Mode is combination of coronagraph masks, band, orientation, IFS vs. DI, polarization optics
- 1/6 of 5-year mission is 41 weeks (after commissioning)

Differential imaging options

- Angular Differential Imaging (ADI) uses different roll angles on target star
 - Operating constraints set roll $|\theta_x|$ < 15 deg
 - Zero-point of roll references solar array to sun position

Reference Differential Imaging (RDI) uses another star

ADI and RDI noise considerations

- Time spent doing RDI includes time off-target
 - RDI gets fewer planet photons
- Performing ADI contains measurement noise from two photometric apertures, equally exposed
 - ADI residuals contain √2 factor in measurement noise (detector noise, stellar shot noise) w.r.t. single photometric aperture
 - If RDI measurements can be made with lower measurement noise, residuals can approach that of single photometric aperture alone
- In both cases, slew & settle overhead must be considered
 - Overhead generally higher for RDI, compared to ADI using 26 deg

ADI and RDI fundamental considerations

- ADI involves self-subtraction of exo-zodi / disk signatures
 - For 26 deg roll, features with modest azimuthal structure are mostly absent in differential image
- RDI may allow diversity of bright star choices
 - Average out astrophysical confusion
- RDI allows for construction of mission-wide library
 - Unquantified benefit to post-processing
- CGI Integrated Modeling tentatively shows that RDI with different spectral types (effective temperatures) introduces little error due to spectrum
 - Allows use of early-type reference stars differenced against late-type target stars

"Chop" mentality

Perform differencing on timescales short compared to dominant temporal frequencies of disturbances

- DM settling timescales > 100 hrs
- Thermal timescales > 10 hrs
- RWA timescales ~ hrs
- Temporal filtering effect of differential
 - Integrate for time T -> temporal convolution by top-hat
 - Difference successive T periods -⇒ convolution with +/- delta fn
 - In frequency space, filter amplitudes by $\sin(\pi fT)^2/(\pi fT)$
 - Asymptotes to $(\pi fT)^2$ power for small f, $1/(\pi fT)^2$ power for large f

Factors in OS6 construction (1)

- OS6 balances slew/settle overhead, available bright stars, and desire for short chop period
 - Brighter stars require less time off-target

If dominated by Poisson noise, when bright star ~ 3

mag brighter than target, spend ~ 20% of time on bright star

 If detector noise dominated, spend much less time on bright star

Factors in OS6 construction (2)

- Availability of bright stars is factor
 - Require V < 3, stellar angular diameter < 1 mas
 - Implicitly, these must be hot stars (A2 and hotter)
 - Not yet screened for multiplicity (~ 50%)
- Check each of 15 RV target stars for distances to V < 3, diameter < 1 mas stars
 - Most targets have a bright star < 30 deg away
- RDI to bright star V < 3
 has similar slew/settle
 overhead w.r.t. 26 deg roll

Factors in OS6 construction (3)

- Slew/settle time is ~ 11 minutes for 26 deg roll or slew
 - Approximately 3 deg/min plus 2.5 min fixed time
- Want to enable RDI with 80% / 20% target / bright star duty cycle
 - Appropriate for $\Delta V = 3$ Poisson noise considerations on a low-flux planet
- Choose nominal ~ 10% overhead from slew/settle
 - 12 minutes for 30 deg slew is 10% of a 120 min interval
- Given 2 hr bright-star observation, want 8 hrs on target
- Little harm in ADI-like observation while on-target
 - Again choose 2 hr chop based on 10% overhead, 11 min

OS6 as RDI + ADI

- For arbitrary observation, break into 10 hr cycles
 - Each cycle has A-B-A-B-bright 2 hr intervals
- Beginning of visit has 8 hr EFC setup
 - 8 hr is not yet well justified
 - Long observations almost certainly will want repeat EFC
 N
 N

STOP model inputs

Need specific case for modeling inputs

- Keep 47 UMa as target for consistency with OS3, OS5
- Time of year determines sun position
 - Sun determines observing constraints, thermal impact of slew
- Choose η UMa as nearby bright star
 - Previous choice was β UMa, but β UMa is > 1 mas
 - η UMa is good choice for 47 UMa during particular times of the year
- Choose median thermal impact
 - Can manipulate schedule to get better or worse days
- Calculate for 13 cycles of 10 hrs each
 - 94 hrs on target

STOP model results

Missing pieces

- Non-thermal materials dynamics
 - Outgassing, drying, creep, growth
- Update target list, use Gaia catalog instead of Yale
 - Not much evolution of understanding of V < 3 stars
- Multiplicity of entries in bright star catalog
- Quantify errors introduced by differencing speckle fields of different effective temperatures

BACKUP SLIDES

ADI + RDI calculations

10 aperture measurements per cycle for one residual planet aperture

define photometric weights

 Arrange intensity measurements into columns (pointing) and rows (two locations)

I _{bkg +} I _{pl}	l _{bkg}	I _{bkg +} I _{pl}	I _{bkg}	I bkg
I _{bkg}	l _{bkg +} l _{pl}	/ bkg	l _{bkg +} l _{pl}	I bkg

- Parametrize negative (non-planet) weights by 0 ≤ w_{ref} ≤ 1
 - This is scale of ADI ($w_{ref} = 0$) to RDI ($w_{ref} = 1$)

0.25	$-(1-w_{\rm ref})/4$	0.25	$-(1-w_{\rm ref})/4$	-w _{ref} /2
$-(1-w_{\rm ref})/4$	0.25	$-(1-w_{\rm ref})/4$	0.25	- w _{ref} /2

No single "best" weighting approach

- Effectiveness of chopping in subtracting slow variations is diluted when $w_{ref} > 0$
- Weighting that is best for Poisson noise is not best for temporal chopping (RDI + ADI)
- Weighting that is best for detector noise ($w_{ref} \sim 1$) is not best for temporal chopping
- Weighting that is best for chopping is ADI alone $(w_{ref} = 0)$

ADI	0.25	-0.25	0.25	-0.25	
	-0.25	0.25	-0.25	0.25	
RDI	0.25		0.25		-0.5
		0.25		0.25	-0.5

Dependence on W_{ref}

- For calculation, assume ratio of bright star to target star is B=16 ($\Delta V=3$), all pointing overheads equal to each other
- Previous calcs include no measurement noise (shot + detector)

What OS6 w_{ref} should we choose

- Remember that w_{ref} is an analysis parameter, data can be analyzed as a function of w_{ref} (all values 0-1)
- Take exact Req. numbers from WIETR, w_{ref}=0 (ADI)
- Change DM number to 0.2 in 2 hrs, w_{ref} ~ 1/3
 - DM 0.2 in 2 hrs only requires 16 hrs since mode change, 0.45 for w_{ref}

- Choice of OS6 + w_{ref} depend strongly on assumptions about dynamic behavior
 - Need more detailed analysis; not just linear / quadratic eyeball guess
- Detector noise terms are far less uncertain
 - Extra noise at small w_{ref} is correct
- Likely want to baseline $0.5 < w_{ref} < 0.75$
 - This is 3.5 hrs $< \Delta t <$ 4.25 hrs
- Assume $\Delta t = 4$ hrs?

How do we pick "best" bright star during chop?

Minimize thermal effect

- Match cosine of angle between solar panel normal and sun direction
- Allow any roll angle -13 to +13 deg on bright star
- Not yet concerned with matching roll angle, seen in OS5
- Consider "effective" V magnitude of bright star, after accounting for dead time for slew in both directions (to bright star and back to target star)
- Insist that effective V magnitude of bright star is brighter than 2.9, stellar angular diameter < 1 mas
- If cosine of solar angle is met exactly with more than 1 star, then select based on brightest effective V magnitude

Graphical depiction of pointing (1)

 Use observatory-centric coordinates, sky is ICRS (inertial)

- Solar panels will always face sun
 - Pitch angles +/- 36 deg
 - Roll +/- 15 deg

Graphical depiction of pointing (2)

For each day, find "best" bright star

 Best bright star will be different on different days of year

List of RV targets

Old list has ~ 15 stars with RV planets

- planets brighter than 10⁻¹⁰,
- parent star V < 9</p>

planet-star separation > 150 mas

- ~ 20 bright stars (without planets) get used
 - stellar angular diameter1 mas
 - $-V_{\rm eff} < 2.9$

Observing geometry of 47 UMa over 1

yr

How anomalous are 47 UMa's

medians?

- 47 UMa has large median thermal effect, bright median star, and large median slew
- Case study was a match to median V, slew of case study does not match median

RWA changes affect differential measurements

 Eric Stoneking Low Wheel Speed.pdf, evolution of 6 wheel speeds over ~ 1.5 days

RWA changes (2/2)

This is RWA WFE jitter, with specific normalization

